

Rev. 1.0

REVISION HISTORY

RevisionDescriptionRev. 1.0Initial Issue

Issue Date ontek Oct.11.2023

Rev. 1.0

FEATURES

- Fast access time : 55ns
- Low power consumption: Operating current : 12mA (TYP.) Standby current : 8μA (TYP.)
- Single 2.7V ~ 3.6V power supply
- ECC : 1-bit error correction per byte
- All inputs and outputs TTL compatible
- Fully static operation
- Tri-state output
- Data byte control :
 - (i) BYTE# fixed to V_{CC}
 - LB# controlled DQ0 ~ DQ7
 - UB# controlled DQ8 ~ DQ15
 - (ii) BYTE# fixed to Vss
 - DQ15 used as address pin, while
 - DQ8~DQ14 pins not used
- Data retention voltage : 1.5V (MIN.)
- Green package available

PRODUCT FAMILY

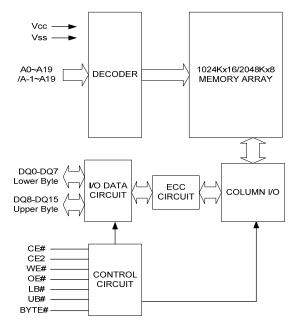
Package : 48-pin 12mm x 20mm TSOP I

GENERAL DESCRIPTION

The LY69L102616A is a 16,777,216-bit low power CMOS static random access memory organized as 1,048,576 words by 16 bits or 2,097,152 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

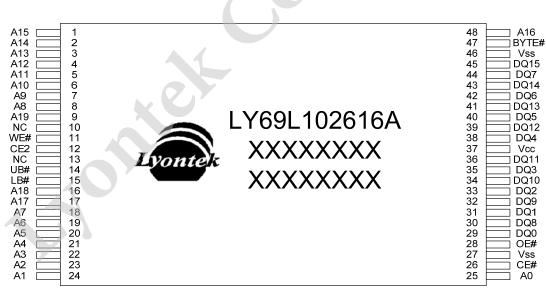
LY69L102616A

The LY69L102616A embeds error-correcting code (ECC) which can correct single-bit error per byte. It is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.


The LY69L102616A operates from a single power supply of $2.7V \sim 3.6V$ and all inputs and outputs are fully TTL compatible.

Product	Operating	Ver Dange Speed		Power Dissipation				
Family	Temperature	Vcc Range	Speed	Standby(IsB1,TYP.)	Operating(Icc,T)			
LY69L102616A	0 ~ 70℃	2.7 ~ 3.6V	55ns	8µA	12mA			
I Y69I 102616A(I)	-40 ~ 85℃	$27 \sim 36V$	55ns	8uA	12mA			

Rev. 1.0


FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A19	Address Inputs(word mode)
A-1 - A19	Address Inputs(byte mode)
DQ0 - DQ15	Data Inputs/Outputs
CE#, CE2	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
BYTE#	Byte Enable
Vcc	Power Supply
Vss	Ground
NC	No Connection

PIN CONFIGURATION

TSOP I

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838 FAX: 886-3-6668836

Rev. 1.0

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on V _{CC} relative to V _{SS}	V _{T1}	-0.5 to 4.6	V
Voltage on any other pin relative to Vss	V _{T2}	-0.5 to Vcc+0.5	V
Operating Temperature	т	0 to 70(C grade)	- °C
Operating Temperature	TA	-40 to 85(I grade)	
Storage Temperature	Tstg	-65 to 150	°C
Power Dissipation	PD	1	W
DC Output Current	Ιουτ	50	mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	ODE CE# CE2 BYTE# OE# WE# LB#		LB#	UB#	1/C	I/O OPERATION					
MODE	02/	ULL	DIIL	02/	•••=//	20//	00/	DQ0-DQ7	DQ8-DQ14	DQ15	CURRENT
	Н	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	
Standby	Х	L	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	I _{SB} ,I _{SB1}
	Х	Х	Н	Х	Х	Н	H	High-Z	High-Z	High-Z	
Output	L	Н	Н	Н	Н	L	X	High-Z	High-Z	High-Z	
Disable	L	Н	Н	Н	н	X		High-Z	High-Z	High-Z	lcc,lcc1
Disable	L	Н	L	Н	н	L	L	High-Z	High-Z	A-1	
	L	Н	Н	L	Н	L	Н	Dout	High-Z	High-Z	
Read	L	Н	Н	L	н	Н	L	High-Z	Dout	Dout	lcc,lcc1
	L	Н	Н	L	Н	L	L	Dout	Dout	Dout	
	L	Н	Н	Х		L	Н	DIN	High-Z	High-Z	
Write	L	Н	Н	X	L	Н	L	High-Z	DIN	DIN	Icc,Icc1
	L	Н	Н	X	L	L	L	DIN	DIN	DIN	
Byte#	1	Н		Y	Н	L	I	Dout	High-Z	A-1	lcc,lcc1
Read	-			_		-	L	Boor	ingir 2		100,1001
Byte # Write	L	Н	L	х	L	L	L	DIN	High-Z	A-1	Icc,Icc1
Notoo:											

Notes:

1. $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

2. The BYTE# pin has to be tied to V_{cc} to use the device as a 1M x 16 SRAM, and to be tied to V_{ss} as a 2M x 8 SRAM.

In the 2M x 8 configuration, Pin 45 is A-1, and both UB# and LB# are tied to Vss, while DQ8 to DQ14 pins are not used.

Rev. 1.0

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	Vcc			2.7	3.0	3.6	V
Input High Voltage	V1H*1			2.2	-	Vcc+0.3	V
Input Low Voltage	V1L*2			- 0.2	-	0.6	V
Input Leakage Current	L	$V_CC \geqq V_IN \geqq V_SS$		- 1	-	1	μA
Output Leakage Current	ILO	V _{CC} ≧ V _{OUT} ≧ V _{SS} Output Disabled		- 1	-	1	μA
Output High Voltage	Vон	I _{ОН} = -1mA		2.2	2.7	-	V
Output Low Voltage	Vol	lo∟ = 2mA		-	-	0.4	V
Average Operating Power supply Current	lcc	Cycle time = Min. CE# \leq 0.2V and CE2 \geq V _{CC} -0.2V I _{VO} = 0mA Others at 0.2V or V _{CC} -0.2V	~ 2		12	20	mA
	Icc1	Cycle time = 1μ s CE# $\leq 0.2V$ and CE2 $\geq V_{cc}$ -0.2V I _{VO} = 0mA Other pins at 0.2V or V _{cc} -0.2V		-	3	5	mA
			SL ^{*5} 25℃	-	8	16	μA
Standby Power	1	$CE# \ge V_{CC}-0.2Vor CE2 \le 0.2V$	SLI ^{*5} 40°C	-	8	18	μA
Supply Current	I _{SB1}	Other pins at 0.2V or Vcc-0.2V	-SL *6	-	-	50	μA
			-SLI *7	-	-	80	μA

Notes:

1. $V_{IH}(max) = V_{CC} + 2.0V$ for pulse width less than 6ns.

2. $V_{IL}(min) = V_{SS} - 2.0V$ for pulse width less than 6ns.

3. Over/Undershoot specifications are characterized on engineering evaluation stage, not for mass production test.

4. Typical values are included for reference only and are not guaranteed or tested.

Typical valued are measured at V_{CC} = V_{CC} (TYP.) and T_A = 25°C

5. This parameter is measured at $V_{CC} = 3.0V$

6. This parameter is measured at $T_A = 70^{\circ}C$

7. This parameter is measured at $T_A = 85^{\circ}C$

CAPACITANCE (T_A = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Input Capacitance	Cin	-	8	pF
Input/Output Capacitance	Ci/o	-	8	pF

Note : These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$

Rev. 1.0

AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

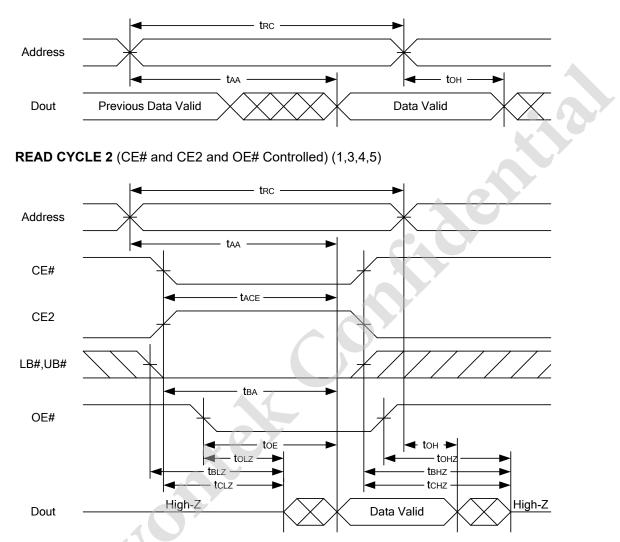
PARAMETER	SYM.	LY69L10	LY69L102616A-55		
FARAMETER	3 T WI.	MIN.	MAX.	UNIT	
Read Cycle Time	t _{RC}	55	-	ns	
Address Access Time	taa	-	55	ns	
Chip Enable Access Time	t ACE	-	55	ns	
Output Enable Access Time	toe	-	30	ns	
Chip Enable to Output in Low-Z	t _{CLZ} *	10	-	ns	
Output Enable to Output in Low-Z	tolz*	5	-	ns	
Chip Disable to Output in High-Z	tcнz*	-	20	ns	
Output Disable to Output in High-Z	t _{онz} *	-	20	ns	
Output Hold from Address Change	tон	10	-	ns	
LB#, UB# Access Time	t _{BA}	-	55	ns	
LB#, UB# to High-Z Output	t _{BHZ} *	-	20	ns	
LB#, UB# to Low-Z Output	t _{BLZ} *	10	-	ns	

(2) WRITE CYCLE

PARAMETER	SYM.	LY69L10	UNIT	
PARAMETER	5 T IVI.	MIN.	MAX.	UNIT
Write Cycle Time	twc	55	-	ns
Address Valid to End of Write	t _{AW}	50	-	ns
Chip Enable to End of Write	tcw	50	-	ns
Address Set-up Time	t _{AS}	0	-	ns
Write Pulse Width	twp	45	-	ns
Write Recovery Time	twr	0	-	ns
Data to Write Time Overlap	tow	25	-	ns
Data Hold from End of Write Time	t _{DH}	0	-	ns
Output Active from End of Write	tow*	5	-	ns
Write to Output in High-Z	twнz*	-	20	ns
LB#, UB# Valid to End of Write	t _{BW}	50	-	ns

*These parameters are guaranteed by device characterization, but not production tested.

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM


With Error-Correcting Code (ECC)

LY69L102616A

Rev. 1.0

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

Notes :

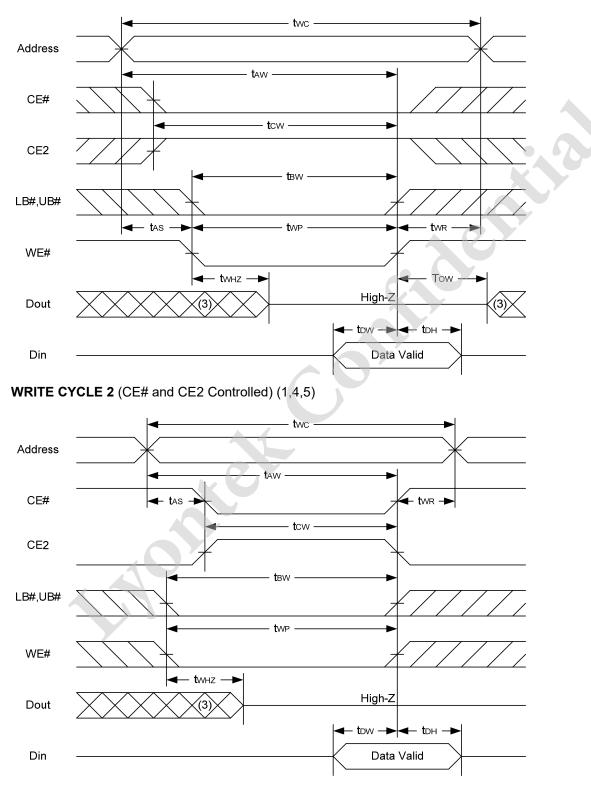
1.WE# is high for read cycle.

2.Device is continuously selected OE# = low, CE# = low, CE2 = high, LB# or UB# = low.

3.Address must be valid prior to or coincident with CE# = low, CE2 = high, LB# or UB# = low transition; otherwise t_{AA} is the limiting parameter.

4.t_{CLZ}, t_{BLZ}, t_{OLZ}, t_{CHZ}, t_{BHZ} and t_{OHZ} are specified with C_L = 5pF. Transition is measured \pm 500mV from steady state.

5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{BHZ} is less than t_{BLZ} , t_{OHZ} is less than t_{OLZ} .



16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

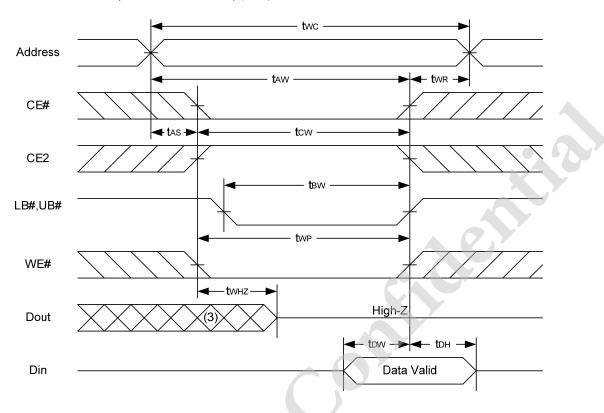
Rev. 1.0

With Error-Correcting Code (ECC)

LY69L102616A

WRITE CYCLE 1 (WE# Controlled) (1,2,4,5)

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838 FAX: 886-3-6668836



16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

Rev. 1.0

With Error-Correcting Code (ECC)

LY69L102616A

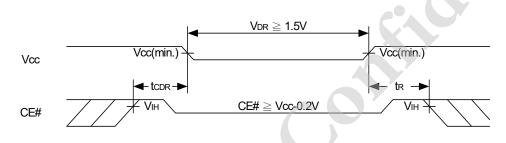
WRITE CYCLE 3 (LB#,UB# Controlled) (1,4,5)

Notes :

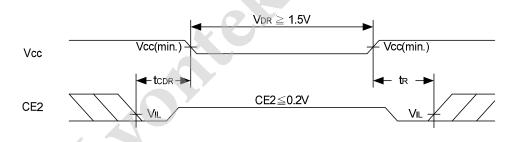
- 1.A write occurs during the overlap of a low CE#, high CE2, low WE#, LB# or UB# = low.
- 2. During a WE# controlled write cycle with OE# low, twp must be greater than twHZ + tow to allow the drivers to turn off and data to be placed on the bus.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4.If the CE#, LB#, UB# low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 5.tow and t_{WHZ} are specified with C_L = 5pF. Transition is measured ±500mV from steady state.

LY69L102616A 16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

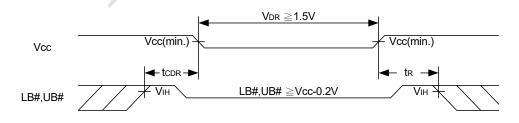
Rev. 1.0


With Error-Correcting Code (ECC)

DATA RETENTION CHARACTERISTICS


SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT					
Vdr	CE# \geq V _{CC} - 0.2V or CE2 \leq 0.2		1.5	-	3.6	V				
		SL	25° ℃	-	6.5	16	μA			
Inn		SLI	40 °C	-	6.5	18	μA			
IDR	Other pins at 0.2V or Vcc-0.2V			-		50	μA			
				-	-	80	μA			
tcdr	See Data Retention Waveforms	ow)	0	-	-	ns				
t _R				t _{RC*}		-	ns			
Recovery Time t _R t _{RC*} - ns t _{RC*} = Read Cycle Time - - ns DATA RETENTION WAVEFORM - - - ns										
	Vdr Idr tcdr tr	$\begin{array}{c c} V_{DR} & CE\# \geqq V_{CC} - 0.2V \text{ or } CE2 \leqq 0.2\\ V_{CC} = 1.5V\\ I_{DR} & CE\# \geqq V_{CC} - 0.2V \text{ or } CE2 \leqq 0.2V\\ Other \ pins \ at \ 0.2V \ or \ V_{CC} - 0.2V\\ t_{CDR} & See \ Data \ Retention \ Waveforms\\ t_{R} & \end{array}$	$\begin{array}{ c c c c c } \hline V_{DR} & CE\# \geqq V_{CC} - 0.2V \text{ or } CE2 \leqq 0.2V \\ \hline V_{CC} = 1.5V \\ CE\# \geqq V_{CC} - 0.2V \text{ or } CE2 \leqq 0.2V \\ \hline Other \text{ pins at } 0.2V \text{ or } V_{CC} - 0.2V \\ \hline SL \\ \hline SL \\ \hline t_{CDR} & See \text{ Data Retention Waveforms (below t_R)} \end{array}$	$\begin{array}{ c c c c c } \hline V_{DR} & CE\# \geqq V_{CC} - 0.2V \text{ or } CE2 \leqq 0.2V \\ \hline V_{CC} = 1.5V \\ CE\# \geqq V_{CC} - 0.2V \text{ or } CE2 \leqq 0.2V \\ \hline Cther \text{ pins at } 0.2V \text{ or } V_{CC} - 0.2V \\ \hline SL \\ \hline SLI \\ \hline t_{CDR} & See \text{ Data Retention Waveforms (below)} \\ \hline t_{R} & \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			

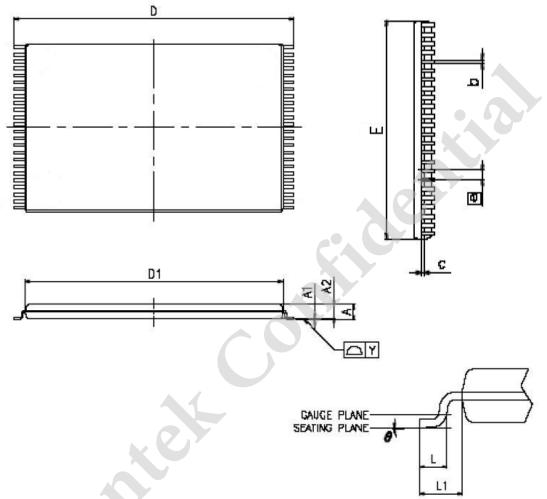
DATA RETENTION WAVEFORM


Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

Low Vcc Data Retention Waveform (3) (LB#, UB# controlled)

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838 FAX: 886-3-6668836



LY69L102616A

Rev. 1.0

PACKAGE OUTLINE DIMENSION

48-pin 12mm x 20mm TSOP I Package Outline Dimension

	VARIATIONS (/	ALL DINENS	KONS SHOW	N IN MM)	
	SYMBOLS	MIN.	NOM.	MAX	
	A	_	-	1.20	
	A1	0.05	-	0.15	
	A2	0.95	1.00	1.05	
	Ь	0.17	0.22	0.27	
	c	0.10	-	0.21	
∕∆		19.80	20.00	20.20	
∕∆	01	18.30	18.40	18.50	
∕∆	E	11.90	12.00	12.10	
	e	0.50 BASIC			
	L	0.50	0.60	0.70	
∕∆	L1	_	0.80	-	
∕∆	Ŷ	-	-	0.10	
∕∆	0	Ċ.	-	5"	

NOTES:

- 1 JEDEC OUTLINE : MO-142 DD
- 2.PROFILE TOLERANCE ZONES FOR D1 AND E DD NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- 3.DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE & DIMENSION AT NAXIMUN MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

Lyontek Inc. reserves the rights to change the specifications and products without notice. 2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838 FAX: 886-3-6668836

Rev. 1.0

ORDERING INFORMATION

Package Type	Access Time (Speed)(ns)	Power Type	Temperature Range(℃)	Packing Type	Lyontek Item No.
48-pin	55	Special Ultra	ra 0°C~70°C Tray		LY69L102616ALL-55SL
(12mm x 20mm) TSOP I		Low Power		Tape Reel	LY69L102616ALL-55SLT
			-40°C~85° C	Tray	LY69L102616ALL-55SLI
				Tape Reel	LY69L102616ALL-55SLIT

Rev. 1.0

LY69L102616A 16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM With Error-Correcting Code (ECC)

ontek THIS PAGE IS LEFT BLANK INTENTIONALLY.